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SUMMARY

Stable Foxp3 expression is required for the develop-
ment of functional regulatory T (Treg) cells. Here, we
demonstrate that the expression of the transcription
factor Foxp3 can be regulated through the poly-
ubiquitination of multiple lysine residues, resulting
in proteasome-mediated degradation. Expression
of the deubiquitinase (DUB) USP7 was found to be
upregulated and active in Treg cells, being associ-
ated with Foxp3 in the nucleus. Ectopic expression
of USP7 decreased Foxp3 polyubiquitination and
increased Foxp3 expression. Conversely, either
treatment with DUB inhibitor or USP7 knockdown
decreased endogenous Foxp3 protein expression
and decreased Treg-cell-mediated suppression
in vitro. Furthermore, in a murine adoptive-transfer-
induced colitis model, either inhibition of DUB activ-
ity or USP7 knockdown in Treg cells abrogated their
ability to resolve inflammation in vivo. Our data reveal
a molecular mechanism in which rapid temporal
control of Foxp3 expression in Treg cells can be
regulated by USP7, thereby modulating Treg cell
numbers and function.

INTRODUCTION

Foxp3+ regulatory T (Treg) cells are a specific subset of CD4+

T cells that are crucial for the maintenance of self-tolerance

(Khattri et al., 2003; Fontenot et al., 2003). The X-chromo-
some-encoded transcription factor Foxp3 is essential for both

Treg cell development and function. Foxp3 mutations in mice

as well as in immune dysregulation polyendocrinopathy, enter-

opathy, and X-chromosome-linked syndrome (IPEX) patients

result in the development of complex autoimmune diseases

due to Treg cell deficiency (Khattri et al., 2003). T cells manipu-

lated to ectopically express Foxp3 acquire the Treg cell pheno-

type (Khattri et al., 2003; Hori et al., 2003). Furthermore, a 90%

decrease of Foxp3 protein expression due to destabilizing alter-

ations in the 30 UTR of the Foxp3 messenger RNA (mRNA),

thereby destabilizing mRNA, results in significantly impaired

Treg-cell-mediated suppression, demonstrating that the amount

of Foxp3 protein directly correlates to Treg cell function (Wan

and Flavell, 2007).

Constitutive expression of Foxp3 has been demonstrated to

be essential for themaintenance of Treg cell suppressor function

(Williams and Rudensky, 2007). Although the precise molecular

mechanisms regulating expression of the Foxp3 gene are incom-

pletely understood, it has been reported that TGF-b, IL-2, or

T cell receptor (TCR) stimulation of T cells can all result in

increased Foxp3 expression (Kim and Leonard, 2007; Yao

et al., 2007). This is most likely modulated by the demethylation

of the Foxp3 promoter or conserved noncoding regions in the

Foxp3 locus (Kim and Leonard, 2007). In addition, multiple

transcription factors, including CREB-ATF, Ets-1, Foxo1 and

Foxo3, and STAT5 have been demonstrated to regulate Foxp3

transcription (Ouyang et al., 2010; Polansky et al., 2010; Yao

et al., 2007; Kim and Leonard, 2007).

Foxp3 expression in Treg cell is not unique, given that in vitro

TCR stimulation of CD4+CD25� T cells results in the transient

expression of Foxp3 mRNA and protein. However, the vast

majority of cells do not exhibit a suppressive phenotype, and it

is possible that Foxp3 acts here to prevent T cell hyperactivation
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(Wang et al., 2007; Gavin et al., 2006). In contrast, a small

subpopulation of these TCR-stimulated CD4+CD25� cells ex-

presses both high and stable Foxp3 protein, thus acquiring sup-

pressive capacity (Allan et al., 2005; Passerini et al., 2008). These

studies, as well as others, have shown that the persistent

expression of Foxp3 is essential for themaintenance of suppres-

sor function.

Currently, there is debate as to whether Foxp3+ Treg cells can

lose Foxp3 expression and suppressive function and whether

they exhibit characteristics of other Th cell subsets. Several

independent studies in which Foxp3+ Treg cells were adoptively

transferred into lymphopenicmice demonstrated that 10%–50%

of the transferred cells lost Foxp3 expression (Gavin et al., 2007;

Komatsu et al., 2009; Duarte et al., 2009). Furthermore, Treg cells

from both the periphery and the thymus were found to be con-

verted into Th17 cells upon stimulation with anti-CD3, anti-

CD28, and IL-6, demonstrating a degree of plasticity (Yang

et al., 2008). In addition, Foxp3+ Treg cells have been shown to

convert to a Foxp3� Th1 cell phenotype upon Toxoplasma infec-

tion (Oldenhove et al., 2009). In contrast, studies with (condi-

tional) Foxp3 GFP-CRE mice that were crossed with ROSA26

reporter mice demonstrated that Foxp3 was remarkably stable

and that only a very small subpopulation lost its Foxp3 expres-

sion (Rubtsov et al., 2010; Miyao et al., 2012). These differences

could potentially be explained by the ‘‘pollution’’ of Teff cells that

transiently upregulate Foxp3 without gaining a Treg cell pheno-

type. In addition, Miyao et al. (2012) demonstrated that Foxp3+

Treg cells could transiently downregulate Foxp3 expression,

which was rapidly regained along with suppressive capacity

upon activation. Because these studies have all demonstrated

that Foxp3 protein expression can be rapidly and, often, tran-

siently lost, we have focused on the molecular mechanism

regulating this process.

Protein expression in cells can be regulated by both protein

production and degradation rates. Much of the regulated prote-

olysis in eukaryotic cells is catalyzed by the ubiquitin-protea-

some system (Ciechanover and Schwartz, 2002). Covalently

attached ubiquitin chains of four or more ubiquitin proteins

mark a protein for degradation by the 26S proteasome (Hoch-

strasser, 2006). Protein ubiquitination is a tightly regulated pro-

cess modulated by E1, E2, and E3 ligases, which, in a complex,

catalyze the addition of ubiquitin to lysine residues of the target

protein. Here, the initial ubiquitin serves as an acceptor for addi-

tional cycles of ubiquitin modification, resulting in a developing

polyubiquitin chain (Eldridge and O’Brien, 2010). Protein deubi-

quitination is an equally well-regulated process modulated by a

large family of deubiquitinating enzymes (DUBs). DUBs catalyze

the removal of ubiquitin from specific protein substrates, thereby

preventing protein degradation, resulting in increased target

protein expression (Nijman et al., 2005).

Our group, as well as others, has previously shown that Foxp3

can be polyubiquitinated; however, the regulation of this process

and its modulators has remained elusive (Dang et al., 2011; van

Loosdregt et al., 2011; van Loosdregt et al., 2010). Here, we

establish that the DUB USP7 (also known as HAUSP) is active

in primary Treg cells and associates with Foxp3. Ectopic expres-

sion of USP7 specifically decreased Foxp3 polyubiquitination,

resulting in increased Foxp3 protein expression. Conversely,

knockdown of USP7 resulted in decreased Foxp3 protein.
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Furthermore, Treg cell function was noticeably decreased

when USP7 was knocked down or when DUB activity was

inhibited both in vitro and in vivo. The manipulation of Foxp3

ubiquitination provides a molecular mechanism for assuring

rapid temporal control of Foxp3 expression in T cells, thereby

regulating Treg cell numbers and function.

RESULTS

DUBs Modulate Treg-Cell-Mediated Suppression
To assess whether ubiquitination could regulate Treg-cell-medi-

ated suppression, we used a pan-DUB inhibitor (DUBi; Fig-

ure S1A available online) (Colombo et al., 2010; Patent WO,

2007). Carboxyfluorescein succinimidyl ester (CFSE)-labeled

peripheral blood mononuclear cells (PBMCs) were cocultured

with sorted human CD4+CD25highCD127low Treg cells that had

been pretreated with DUBi separately as described in the

Experimental Procedures. Treg-cell-mediated suppression was

significantly decreased by preincubating Treg cells with DUBi

(Figure 1A). Accordingly, IL-2 mRNA expression was upregu-

lated in Treg cells transiently treated with DUBi both 2 and

7 days after treatment (Figure S1B). Furthermore, treatment

with DUBi resulted in the decreased expression of additional

Foxp3 transcriptional target genes CD25 and GITR on Foxp3+

Treg cells (Figure S1C).

To determine whether ubiquitination could also modulate

Treg-cell-mediated suppression in vivo, we used a well-estab-

lished mouse adoptive transfer colitis model. Here, immunodefi-

cient mice are infused with CD4+CD45RBhigh T cells in order to

induce colitis, and disease severity could be reduced by the

adoptive transfer of Treg cells (Powrie et al., 1994). Initially,

sorted Treg cells isolated from Foxp3-GFPmice were pretreated

with DUBi and transferred into Rag1�/� mice 3 weeks after the

infusion of naı̈ve CD4+ T cells. Mice were sacrificed 3 weeks after

Treg cell infusion, and colitis severity was assessed. Treatment

with Treg cells noticeably reduced disease scores in comparison

to mice that did not receive Treg cells (Figures 1B and 1C). Dis-

ease scores of mice receiving Treg cells pretreated with DUBi

were significantly increased in comparison to control mice, indi-

cating that the inhibition of DUB activity can significantly abro-

gate Treg-cell-mediated suppression in vivo. The percentage

of GFP+ cells in the spleen was similar in the experimental

groups, indicating that Treg cell survival was not affected (Fig-

ure 1D). Interestingly, Foxp3 protein expression was significantly

reduced in DUBi-treated Treg cells in comparison to untreated

Treg cells (Figures 1E and S1D). Given that (poly)ubiquitination

is a well-described modulator of protein degradation, these

data suggest that Foxp3 protein, and, thus, Treg cell function,

may be regulated by ubiquitination.

Foxp3 Protein Expression Is Regulated by
Polyubiquitination
First, to determine whether DUBs can regulate Foxp3 expres-

sion, we evaluated Foxp3 protein stability under normal culture

conditions. Foxp3-transfected cells or Treg cells were treated

with the protein translation inhibitor cycloheximide (CHX), and

Foxp3 protein expression was determined. In both transfected

human embryonic kidney (HEK) 293T cells (Figure 2A) and

human Treg cells (Figure 2B), the inhibition of translation led to



Figure 1. Ubiquitination Modulates Treg

Cell Function

(A) Sorted human CD4+CD25highCD127low Treg

cells were pretreated with 10 mM DUBi for 1 hr,

washed, and cocultured with CFSE-labeled

PBMCs in anti-CD3-coated wells for 4 days. CFSE

dilution of CD4+ cells was analyzed by flow

cytometry.

(B) CD4+CD45RBhigh cells were injected into

immunodeficient mice. Sorted GFP+ Treg cells

from Foxp3-GFP promoter mice were pre-

incubated with 10 mM DUBi for 1 hr and injected

3 weeks later. Mice were sacrificed 3 weeks after

Treg cell administration. Sections of the colon

were analyzed and scored (five mice per group).

(C) Representative hematoxylin- and eosin-

stained tissue slides of the colon.

(D) Analysis of CD4+GFP+ cell numbers in the

spleen.

(E) Percentage of Foxp3+ CD4+ T cells in the

spleen. Data shown are representative of at least

three independent experiments, *p<0.05.

Data are represented as mean + SEM. See also

Figure S1.
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Figure 2. Rapid Turnover of the Foxp3

Protein Is Mediated by Polyubiquitination

(A) HA-Foxp3-transfected HEK 293T cells were

treated with 150 mg/ml cycloheximide (CHX) for 0,

4, and 8 hr. Cell lysates were blotted and analyzed

with specific antibodies. Quantification of Foxp3

intensity relative to HSP90 is included.

(B) Human Treg cells were cultured in the pres-

ence of 150 mg/ml CHX as indicated. Foxp3

amounts were determined by western blot.

Quantification of Foxp3 intensity relative to tubulin

is included.

(C) Human Treg cells were cultured in the pres-

ence of 150 mg/ml CHX. Foxp3 amounts were

determined by flow cytometry.

(D) Ubiquitin pull-down for HA-Foxp3 or HA-Foxp3

K22xR as described in the Experimental Pro-

cedures.

(E) Human Treg cells were cultured with 20 mM

MG132 for 3 hr, cells were lysed, and ubiquitinated

proteins were isolated with TUBE-coupled beads.

Ubiquitinated Foxp3 was visualized by western

blot with anti-Foxp3.

(F and G) HA-Foxp3-transfected HEK 293T cells

(F) or Treg cells (G) were cultured with 5 mM DUBi

for 8 hr. Western blots were incubated with anti-

bodies against, HA, Foxp3, or tubulin, as indi-

cated. Data shown are representative of at least

three independent experiments. IP, immunopre-

cipitation; WB, western blot.

See also Figure S2.
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a rapid decrease in Foxp3 protein amounts, indicating increased

Foxp3 protein degradation. Importantly, Foxp3 mRNA expres-

sion in Treg cells was unchanged (Figure S2A). Similar results

were obtained when Foxp3 expression was analyzed in human

Treg cells by flow cytometry (Figure 2C). Accordingly, protein

expression of IL-2Ra (CD25), a direct Foxp3 transcriptional

target, also decreased upon CHX treatment (Figure S2B). To

further validate that Foxp3 is degraded, we treated Foxp3-trans-

fected HEK 293T cells or natural Treg (nTreg) cells with both CHX

and proteasome inhibitor MG132. MG132 treatment impaired

the effect of CHX, demonstrating that Foxp3 is indeed degraded

by the proteasome (Figures S2C and S2D).

Because we had observed that ubiquitination could modulate

Treg cell function, we subsequently analyzed the ubiquitination

status of Foxp3. HEK 293T cells transfected with both His-

tagged ubiquitin and hemagglutinin (HA)-tagged Foxp3 were

lysed, and ubiquitinated proteins were isolated with Ni-NTA

beads. Foxp3-specific polyubiquitination was determined by

immunoblot analysis with anti-HA. A clear polyubiquitination

pattern was observed with wild-type (WT) Foxp3 (Figure 2D),

and this was abrogated in a Foxp3 mutant in which all lysine

residues were mutated (Foxp3 K22xR), indicating that Foxp3 is
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directly ubiquitinated. Short-term treat-

ment with DUBi increased Foxp3 poly-

ubiquitination, suggesting a continuous

deubiquitination of Foxp3 (Figure 2D).

Although technically challenging, to con-

firm that Foxp3 can also be polyubiquiti-

nated in human Treg cells, we lysed cells
and incubated them with tandem ubiquitin-binding entities

(TUBE)-coupled agarose beads in order to isolate ubiquitinated

proteins. Again, Foxp3-specific polyubiquitination was visual-

ized by immunoblot analysis with anti-Foxp3. In the presence

of MG132, a clear polyubiquitin pattern was observed, demon-

strating that Foxp3 is polyubiquitinated in human Treg cells as

well (Figure 2E).

To determine whether Foxp3 polyubiquitination resulted in the

regulation of Foxp3 protein expression, we treated HA-Foxp3-

transfected cells (Figure 2F) or Treg cells (Figures 2G and S2E)

with DUBi, and Foxp3 protein expression was analyzed. Treat-

ment with DUBi decreased Foxp3 protein expression in both

cell types. Importantly, DUBi treatment did not affect Foxp3

mRNA expression in Treg cells (Figure S2F). Furthermore, the

effect of DUBi on Foxp3 protein expression was dose dependent

(Figure S2G). Given that b-catenin protein is heavily dependent

on polyubiquitination-mediated degradation, it was used as a

positive control for DUBi treatment. As expected, b-catenin

amounts were reduced upon treatment (Figure S2H). Foxp3

K22xR expression was not reduced by DUBi treatment because

this mutant cannot be polyubiquitinated (Figure S2I). To validate

that Foxp3 amounts were decreased because of increased



Figure 3. Identification of Multiple

Foxp3 Ubiquitination Sites

(A) Immunoprecipitated HA-Foxp3 was analyzed

for ubiquitinated lysine residues by MS. Peptides

continuing ubiquitinated lysine residues are de-

picted. Ubiquitinated lysine residues are underlined.

(B) A schematic representation of Foxp3 and the

lysine residues that are ubiquitinated. ZF, zinc finger

motive; LZ, leucine zipper motive; DBD, DNA-binding

motive.

(C) Ubiquitin pull-down for HA-Foxp3 or Foxp3 mu-

tants as described in the Experimental Procedures.

(D) FLAG-ubiquitin-Foxp3 or FLAG-ubiquitin-K7xR-

Foxp3 fusion constructs (in which all seven lysine

residues in ubiquitin are mutated to arginine) were

analyzed for ubiquitination as in (C). Data shown are

representative of at least three independent experi-

ments. WB, western blot.

See also Figure S3.
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protein degradation, we treated Treg cells with DUBi in the pres-

ence of MG132. As expected, treatment with MG132 alone

increased Foxp3 expression (Figure S2J), whereas treatment

with DUBi resulted in reduced Foxp3 amounts. However, in the

presence of MG132, Foxp3 expression was unchanged after

DUBi treatment, demonstrating that Foxp3 protein degradation

is directly modulated by DUBs. Furthermore, Treg cells were

treated with DUBi in the presence of CHX. Again, either DUBi

or CHX treatment alone reduced Foxp3 protein expression (Fig-

ure S2K). Treatment with both compounds resulted in an even

greater reduction in Foxp3 amounts, yet again supporting a

role for DUBs in modulating Foxp3 degradation in Treg cells.

To determine whether the effect observed of treatment with

DUBi was long lasting, we treated Treg cells with DUBi for 1 hr,

and Foxp3 protein expression was evaluated either 1 or 7 days

after treatment. A single treatment for 1 hr resulted in reduced

Foxp3 expression 7 days after treatment (Figure S2L). Taken

together, these data show that Foxp3 protein degradation,

but not synthesis, is regulated posttranscriptionally, a process

that is polyubiquitination dependent and can be rescued by

deubiquitination.

Identification of Multiple Foxp3 Ubiquitination Sites
Because we could demonstrate that Foxp3 polyubiquitination

results in protein degradation, we examined whether specific
Immunity 39, 259–2
lysine residues could be ubiquitinated.

Using a mass spectrometry (MS) approach,

we found five distinct lysine residues in

Foxp3 to be ubiquitinated (K249, K251,

K263, K267, and K393; Figures 3A and

3B). Foxp3 expression constructs in which

all lysines were mutated into arginines

were generated (Foxp3 K22xR) or modified

to express combinations of the lysines iden-

tified. Subsequently, Foxp3 mutants were

analyzed for ubiquitination as previously

described. The addition of all five lysine res-

idues that were identified by MS rescued

Foxp3 ubiquitination. Similarly, the addition
of only lysines 263 and 267 or 249, 251, and 393 restored Foxp3

ubiquitination to amounts similar to WT Foxp3 (Figure 3C).

To evaluate whether the specific location of modification

influences polyubiquitination, we generated a Foxp3 mutant in

which ubiquitin was directly fused to the N terminus. The Ubi-

Foxp3 fusion protein was highly polyubiquitinated and rapidly

degraded, suggesting that polyubiquitination is not dependent

on the specific location of lysine residues (Figure 3D). To further

verify that the ubiquitin fusion protein was indeed polyubiquiti-

nated, we generated a Ubi-K7xR-Foxp3 fusion construct in

which all lysines in ubiquitin, but not in Foxp3, were replaced

with arginines. Mutating the ubiquitin fusion protein reduced

Foxp3 polyubiquitination back to WT levels. Taken together,

these data show that Foxp3 can be polyubiquitinated at multiple

lysine residues, which most likely results in rapid proteasome-

mediated degradation.

USP7 Associates with and Deubiquitinates Foxp3
Next, we sought to determine which DUBs could potentially deu-

biquitinate Foxp3. First, we evaluated which DUBs were both

expressed and active in human Treg cells using an HA-tagged

probe that covalently binds active DUBs, thus allowing isolation

and identification (Borodovsky et al., 2002). Cell lysates from

both nTreg and induced Treg (iTreg) cells were incubated with

the DUB probe, and active DUBs were immunoprecipitated
71, August 22, 2013 ª2013 Elsevier Inc. 263



Figure 4. USP7 Deubiquitinates Foxp3

(A) Human iTreg and nTreg cells were lysed and

incubated with an HA-DUB probe for 30 min.

Using anti-HA-coupled beads, we immunopre-

cipitated active DUBs were, and proteins were

separated on gel and analyzed by MS.

(B) Naı̈ve human CD4+ T cells were differentiated

to Th1, Th2, Th17, and Treg cells. mRNA expres-

sion of USP7 was analyzed by quantitative

RT-PCR. mRNA expression was normalized for

the housekeeping gene GAPDH.

(C) Ubiquitin pull-down for HA-Foxp3 or HA-Foxp3

K22xR as described in the Experimental Pro-

cedures.

(D) Cell lysates of HA-Foxp3- and Myc-USP7-

transfected cells were immunoprecipitated with

anti-HA- or anti-Myc-coupled beads. Immuno-

blots were analyzed with anti-HA or anti-Myc.

(E) Representative confocal microscopy images

of human Treg cells. Endogenous USP7 (red) and

Foxp3 (green) were visualized with specific anti-

bodies, and DAPI was used to visualize the nuclei

(blue).

(F) Foxp3-USP7 association was visualized in

human Treg cells with an in situ proximity ligation

assay as described in the Experimental Pro-

cedures. Punctate staining (green) indicates a

Foxp3-USP7 interaction as detected by the assay,

andDAPIwasused tovisualize thenuclei (blue). *p<

0.05. IP, immunoprecipitation; WB, western blot.

Data are represented as mean + SEM. See also

Figures S3 and S4.
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and separated by SDS-PAGE. Isolated protein bands were

analyzed by MS. MS analysis identified the most intense protein

band as USP7 (coverage 26%), indicating that this DUB is active

in Treg cells (Figures 4A and S3A). Flow cytometric analysis of

CD4+CD25highFoxp3+ Treg cells confirmed that USP7 is ex-

pressed in Treg cells (Figure S3B). Given that Foxp3 expression

is critical during Treg cell development, we analyzed USP7

expression in iTreg cells. Naı̈ve cells were skewed to four

different Th cell subsets (Th1, Th2, Th17, and Treg cells; Fig-

ure S3C), and USP7mRNAwas analyzed by quantitative RTPCR

(qRT-PCR). USP7 mRNA expression was significantly upregu-

lated in iTreg cells but not in other Th subsets, further supporting

a role for the USP7 deubiquitination of Foxp3 in Treg cell differ-

entiation (Figure 4B). To determine whether USP7 could also

deubiquitinate Foxp3, we analyzed Foxp3 polyubiquitination in
264 Immunity 39, 259–271, August 22, 2013 ª2013 Elsevier Inc.
transfected HEK 293T cells. Foxp3 poly-

ubiquitination was reduced with ectopic

expression of USP7, indicating that

USP7 can directly deubiquitinate Foxp3

(Figure 4C). To validate that Foxp3 is

a direct USP7 substrate, we analyzed

the association of the two proteins

by coimmunoprecipitation in HEK 293T

cells (Figure 4D). A clear association

was observed, indicating that Foxp3 can

associate with USP7. To confirm that

both proteins interact in human Treg

cells, we fixed and permeabilized cells,
and both endogenous Foxp3 and USP7 were visualized with

specific antibodies. The colocalization of both proteins was

observed in the nucleus (Figures 4E and S4A). Similar results

were obtained in cells ectopically expressing GFP-tagged

USP7 and mKate-tagged Foxp3 (Figure S4B). To further

confirm that ectopically expressed or endogenous USP7 and

Foxp3 can also directly associate in human Treg cells, we

performed an in situ proximity ligation assay (PLA; see the

Experimental Procedures). Given that a PLA signal can only be

obtained when the proteins of interest are in extremely close

proximity, this technique enables the detection of protein-pro-

tein interactions in cells. The association of USP7 and Foxp3

was observed, and the interaction was localized specifically to

the nucleus (Figures 4F and S4C). Taken together, these data

show that USP7, a DUB localized in the nucleus and interacting



Figure 5. USP7 Deubiquitinates Foxp3 in

Treg Cells

(A) HEK 293T cells were transfected with HA-

Foxp3 or HA-Foxp3 K22xR and Myc-USP7. Cell

lysates were quantified and analyzed by western

blotting with anti-HA and anti-HSP90.

(B) Cells were cotransfected with HA-Foxp3 and

Myc-USP7, Myc-USP14, or FLAG-UCHL3. Cell

lysates were analyzed for Foxp3 expression by

western blotting with anti-HA.

(C) Ubiquitin pull-down for HA-Foxp3 or HA-Foxp3

K22xR as described in the Experimental Pro-

cedures.

(D) Cells were transfected with USP7 siRNA along

with HA-Foxp3. Equalized protein lysates were

immunoblotted and analyzed for HA.

(E) USP7 was knocked down in human Treg cells

with shRNA lentivirus containing a puromycin

resistance cassette. Endogenous USP7 and

Foxp3 expression of puromycin-resistant Treg

cells were analyzed by flow cytometry.

(F) Primary Treg cells were isolated from Foxp3-

Ires-GFP mice and activated with anti-CD3

(5 mg/ml) and anti-CD28 (2 mg/ml) in the presence

of 100 U/ml IL-2 for 24 hr followed by either heat

shock treatment for 30min at 42�Cor replacement

of fresh media with either LPS (1 mg/ml) or IL-6

(20 ng/ml) and cultured for an additional 24 hr

before being harvested for the western blots and

probed with the indicated antibodies.

(G) Primary Treg cells were isolated from Foxp3-

Ires-GFP mice and treated for 1 hr with IL-6

(50 ng/ml). Foxp3-USP7 association was visual-

ized with an in situ proximity ligation assay.

Punctate staining (green) indicates a Foxp3-USP7

interaction as detected by the assay, and DAPI

was used to visualize the nuclei (blue). All results

are representative for at least three independent

experiments. SC, scrambled; SP, smart pool; IP,

immunoprecipitation; WB, western blot.

See also Figure S5.
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with Foxp3, is active in both nTreg and iTreg cells and can deu-

biquitinate Foxp3.

USP7-Mediated Foxp3 Deubiquitination Results
in Increased Foxp3 Protein Expression
To determine whether USP7-mediated deubiquitination results

in increased Foxp3 protein amounts, we assessed Foxp3

expression in HEK 293T cells that were cotransfected with

Foxp3 and USP7. Ectopic expression of USP7 with Foxp3

noticeably increased Foxp3 protein amounts (Figure 5A).

Foxp3 K22xR protein amounts were not increased by the

cotransfection of USP7, indicating that USP7 stabilizes Foxp3

expression by direct deubiquitination. To verify these data, we

treated HEK 293T cells transfected with Foxp3 and USP7 with

CHX in order to determine the effect of USP7 on Foxp3 half-

life. Indeed, USP7 decreased the rate of degradation of Foxp3
Immunity 39, 259–271
(Figure S5A). Furthermore, a pulse chase

experiment was performed to determine

the half-life of Foxp3 or Foxp3 K22xR in

the presence or absence of USP7 (Fig-
ure S5B). We observed a Foxp3 half-life of approximately 4 hr;

however, Foxp3 protein amounts were very stable in the pres-

ence of ectopically expressed USP7 or when all lysines were

mutated to arginines. Accordingly, Foxp3 half-life was similar

in a Foxp3-expressing Jurkat T cell line after treatment with

CHX, whereas Foxp3 K22xR was very stable (Figure S5C). To

investigate whether these observations were specific for USP7,

we analyzed the effect of additional DUBs. Using a global DUB

probe analysis, we found that both USP14 and UCH-L3 were

active in Treg cells (data not shown). In contrast to USP7, neither

USP14 nor UCH-L3 influenced Foxp3 protein expression or

Foxp3 polyubiquitination (Figures 5B and 5C). In addition, a

USP7 knockdown was performed in cells ectopically expressing

Foxp3 with a pool of four separate small interfering RNAs

(siRNAs; Figure S5D). USP7 knockdown resulted in markedly

reduced Foxp3 protein expression in comparison to control
, August 22, 2013 ª2013 Elsevier Inc. 265
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(Figure 5D). To verify these data in primary human Treg cells, we

performed USP7 knockdown with a USP7 small hairpin RNA

(shRNA) lentivirus containing a puromycin resistance cassette.

Foxp3 protein expression of puromycin-resistant Treg cells

was clearly decreased as a result of USP7 knockdown (Figures

5E and S5E). Accordingly, the protein expression of CD25, a

Foxp3 transcriptional target, was also reduced after USP7

knockdown (Figure S5F). Importantly, CD25 expression was un-

affected when USP7 was knocked down in Foxp3� Teff cells

(Figure S5G), providing support that the effect of USP7 on

CD25 expression is mediated through Foxp3. To further validate

that USP7 directly reduced Foxp3 protein expression because of

enhanced degradation and not indirectly through additional

mechanisms, we analyzed the activation status of multiple

signaling pathways in the presence or absence of USP7. No sig-

nificant differences in the downstream targets of TCR and TGF-b

signaling (phospho-ERK, phospho-SMAD3, or phospho-NFkB)

were observed between control andUSP7 knockdown Treg cells

(Figure S5H).

Foxp3 is acetylated at lysines 31, 249, 251, 263, and 267 (Kwon

et al., 2012; Song et al., 2012). Because we have previously

reported that acetylation can stabilize Foxp3 by preventing

ubiquitination, we wished to determine whether the expression

of the described mutants could still be influenced by USP7 (van

Loosdregt et al., 2010). HEK 293T cells were transfected with

Foxp3 K3R (lysines 31, 263, and 267), K4R (lysines 249, 251,

263, and 267), or K5R (lysines 249, 251, 263, 267, and 393) in

the presence or absence of USP7, and Foxp3 expression was

determined. Cotransfection of USP7 increased the expression

of all the mutants, demonstrating that the expression of these

specific mutants can still be regulated by USP7 (Figure S5I).

Next, we sought to determine which signals could regulate

USP7 expression and, thus, Foxp3 stability. Primary Treg cells

from Foxp3-GFP mice were activated and stimulated with lipo-

polysaccharide (LPS), heat shock, or IL-6 and cultured for

24 hr. USP7 expression was reduced by these treatments,

and, accordingly, Foxp3 protein expression was also reduced

in these samples (Figure 5F). To analyze whether IL-6 could

also disrupt association of Foxp3 and USP7, we treated freshly

isolated Foxp3-GFP Treg cells with IL-6 for 1 hr, and a PLA

was performed. As depicted in Figure 5G, short-term IL-6 treat-

ment disrupted the association between Foxp3 and USP7.

Taken together, these data demonstrate that USP7 activity in

Treg cells stabilizes Foxp3, a process that can be disrupted by

inflammatory stimuli.
Figure 6. USP7 Modulates Treg Cell Function In Vitro and In Vivo

(A) IL-2 promoter luciferase activity was analyzed in HEK 293T cells by cotrans

reporter activity is depicted, and all values were normalized for cotransfected Re

(B) USP7 knockdown in human Treg cells was performedwith two different USP7 s

control. Analysis of Treg-cell-mediated suppression was performed with a stand

(C) Colitis was induced by intravenous coinjection of 13 106 CD4+CD25�CD62Lh

body weight over time were expressed as a percentage of the original weight. D

(D) Histological examination of the colon at 8 weeks after cell transfer.

(E) Histological scores were determined at 8 weeks after cell transfer as describ

(F) Spleen, mesenteric lymph node and lamina propria lymph node cells were isol

Teff cells was determined by flow cytometry.

(G) Cell numbers of injected Thy1.1+ Treg cells and Foxp3+ cells were determine

(H) IFN-g and IL-17 production by CD4+ lamina propria lymphocytes was analys

See also Figure S6.
USP7-Mediated Foxp3 Deubiquitination Improves Treg
Cell Functionality
Given that we observed a clear effect of USP7 on Foxp3 protein

stability, we subsequently analyzed the effect of USP7 on Foxp3

transcriptional activity. Promoter activity of the canonical Foxp3

transcriptional target IL2 was evaluated with an IL2 promoter

luciferase reporter. Foxp3 expression resulted in a clear repres-

sion of IL2 promoter activity, whereas the well-characterized

IPEX mutant Foxp3 Del250 was inactive (Figure 6A). Although

cotransfection of Foxp3 Del250 with USP7 alone did not influ-

ence IL2 reporter activity, USP7 significantly increased IL2

promoter repression mediated by WT Foxp3. To determine

whether USP7 can specifically modulate Treg-cell-mediated

suppression, we performed a USP7 knockdown with two

distinct shRNAs, and Treg cell functionality was addressed

with an in vitro suppression assay (Figures 6B and S6A). Both

USP7 shRNAs significantly abrogated Treg-cell-mediated sup-

pression in comparison to the scrambled shRNA control without

affecting apoptosis (Figure S6B). Accordingly, IL-2 expression

was also increased in Treg cells upon USP7 knockdown

(Figure S6C).

To determine whether USP7 activity could also modulate

Treg-cell-mediated suppression in vivo, we once again used a

mouse colitis model. Here, naı̈ve CD4+CD25�CD62Lhigh T cells

were cotransferred with CD4+CD25high USP7 knockdown Treg

cells into Rag2�/� mice. In contrast to WT or control knockdown

Treg cells, USP7 knockdown Treg cells could not suppress the

development of disease based on both body weight loss and

histological analysis of the colon (Figures 6C, 6D, and 6E). Equiv-

alently, Teff cell numbers in the spleen, mesenteric, and lamina

propria lymph nodes were increased in mice that received

shUSP7 Treg cells in comparison to controls (Figure 6F). In addi-

tion, the numbers of Thy1.1 Treg cells were similar in both the

control and USP7 knockdown group, demonstrating that USP7

knockdown did not alter Treg cell survival or homing to lymph

nodes (Figures 6G and S6D). Importantly, the percentage of

Foxp3+ cells within the Thy1.1 population was decreased in

mice that received USP7 knockdown Treg cells, indicating that

knockdown of USP7 resulted in decreased Foxp3 expression,

which was in line with our in vitro observations. Accordingly,

IFN-g and IL-17 production by CD4+ lamina propria lymphocytes

was increased in mice that received USP7 knockdown Treg cells

(Figure 6H). Collectively, these data demonstrate that USP7

can regulate Treg-cell-mediated suppression both in vitro and

in vivo.
fecting NFAT with Foxp3 Del250 or WT Foxp3 with USP7. Repression of IL2

nilla.

hRNAs (#1 or #2), and scrambled (SC) shRNAwas used as control was used as

ard suppression assay.
igh T cells and 23 105 CD4+CD25high Treg cells per Rag2�/�mouse. Changes in

ata are represented as the mean + SEM of eight mice in each group.

ed in the Experimental Procedures.

ated from the mice at 8 weeks after adoptive T cell transfer, and the number of

d by flow cytometry.

ed by ELISA. Data are represented as mean + SEM. *p < 0.05.
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DISCUSSION

The transcription factor Foxp3 is crucial for Treg cell develop-

ment and function and, therefore, is critical in controlling immune

responses (Khattri et al., 2003; Fontenot et al., 2003; Hori et al.,

2003; Williams and Rudensky, 2007). Because Foxp3 protein

expression is directly associated with the suppressive capacity

of Treg cells, many studies have focused on the transcriptional

regulation of Foxp3 expression (Wan and Flavell, 2007; Kim

and Leonard, 2007; Tone et al., 2008). Here, we show that

Foxp3 protein expression can also be regulated by the deubiqui-

tinase USP7. USP7 expression was found to be upregulated in

Treg cells and to interact with and deubiquitinate Foxp3, thereby

increasing Foxp3 protein amounts. USP7 knockdown in Treg

cells resulted in decreased Foxp3 protein expression and

impaired Treg-cell-mediated suppression both in vitro and

in vivo. These data provide insights into the molecular mecha-

nisms regulating Foxp3 protein expression and, therefore, Treg

cell functionality.

We also demonstrate that stimulation with IL-6, heat shock,

or LPS reduces USP7 protein amounts and, thus, Foxp3

expression. Our data are in accordance with a recent study

by Yang et al. (2012) that reports that, in colon tumors, IL-6

can inhibit USP7 expression in a STAT3-dependent manner.

Furthermore, we show that the association of USP7 and

Foxp3 is disrupted upon short-term IL-6 stimulation. These

data indicate that the effects of IL-6 stimulation on Foxp3

protein expression can be both rapid through the disruption

of USP7-Foxp3 association and prolonged by the reduction

of USP7 expression.

Although it was initially thought that Foxp3 expression was

unique for Treg cells, several studies have reported that Foxp3

can also be expressed in activated T cells. The stimulation of

human CD4 cells in vitro with anti-CD3 and anti-CD28 or phorbol

12-meristate 13-acetate and Ca2+ ionophore resulted in the tran-

sient expression of Foxp3, although protein amounts were lower

in comparison to nTreg cells (Gavin et al., 2006; Allan et al.,

2005). Analysis of these T cells transiently expressing Foxp3

revealed that these cells cannot suppress cytokine production

or proliferation of cocultured T cells (Gavin et al., 2006; Allan

et al., 2005). In contrast, TCR-stimulated CD4+CD25� cells ex-

pressing high and stable Foxp3 amounts develop suppressive

capacity, whereas the ablation of Foxp3 in mature Treg cells in

mice with a loxP-flanked Foxp3 allele resulted in a loss of

Treg-cell-mediated suppression and the production of IL-2 and

Th1 cytokines (Williams and Rudensky, 2007; Wang et al.,

2007; Gavin et al., 2006). Here, we demonstrate that the turnover

of Foxp3 in primary Treg cells is relatively high. Given that Foxp3

transcription rates are normally equal to its degradation rates,

the total pool of Foxp3 protein is stable. This high turnover allows

for a rapid regulation of Foxp3 protein expression by the modu-

lation of Foxp3 polyubiquitination and degradation. These data

demonstrate that stable Foxp3 expression is a necessity for

the suppressive phenotype of Treg cells, suggesting that the

stabilization of Foxp3 by USP7 may provide an essential step

in the conversion of activated T cells into iTreg cells. In agree-

ment with this hypothesis, we observed a more than 10-fold

increase of USP7 mRNA in Treg cells induced from a naı̈ve

T cell pool in comparison to other Th subsets.
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Using MS, we identified five distinct lysine residues that were

ubiquitinated (K249, K251, K263, K267, and K393). Although a

mutant of Foxp3 lacking all lysine residues (Foxp3 K22xR)

was not ubiquitinated, the addition of the five identified lysines

in the Foxp3 K22xR background restored Foxp3 ubiquitination.

The addition of K249, K251 and K393, or K263 and K267 was

also sufficient to restore Foxp3 ubiquitination to WT levels,

suggesting a level of promiscuity in which lysine residues are

ubiquitinated. Furthermore, generating an N-terminal ubiquitin-

Foxp3 fusion protein dramatically increased Foxp3 poly-

ubiquitination, demonstrating that the specific location of

Foxp3 polyubiquitinated lysine residues is apparently not crit-

ical. The promiscuity of ubiquitinated lysine residues is a

commonly observed phenomenon and has been described for

a variety of proteins (Lee et al., 2004; Lu et al., 2007; Huang

et al., 2006). For example, with the use of MS, the DUB UCH-

L1 was also found to be ubiquitinated on at least four lysine res-

idues (Meray and Lansbury, 2007). The mutation of all four lysine

residues did not result in reduced ubiquitination levels, only a

UCH-L1 protein in which all 16 lysine residues were mutated

showed severely reduced ubiquitination levels. In addition, the

mutation of single ubiquitinated lysine residues may result in

ubiquitination of secondary lysine residues that are not normally

ubiquitinated, as has been observed in TCRx chain and Gpa1

(Hou et al., 1994; Marotti et al., 2002). This promiscuity poten-

tially allows the possibility for multiple mechanisms to regulate

Foxp3 protein expression.

Interestingly, USP7 polymorphisms have been associated

with multiple autoimmune diseases. In a genome-wide associa-

tion study, 14,000 cases of seven common diseases were

compared to 3,000 controls (Wellcome Trust Case Control

Consortium, 2007). Numerous single-nucleotide polymorphisms

in the USP7 gene were highly significantly correlated with

the autoimmune diseases, including Crohn’s disease, insulin-

dependent diabetes mellitus, and rheumatoid arthritis. The pre-

cise effect of these polymorphisms on USP7 function remains

unclear. Because we demonstrate that USP7 increases Treg-

cell-mediated suppression in multiple models, it is tempting to

speculate that these USP7 polymorphisms may inhibit USP7

function, resulting in reduced Foxp3 expression, abrogating

Treg cell functionality, and, thus, leading to autoimmunity.

Treg cells are found in increased numbers both within and in

close proximity to solid tumors. They have been shown to inhibit

tumor-specific T cell immunity and contribute to the growth of

human tumors in vivo (Yang et al., 2006; Curiel et al., 2004).

The depletion of CD4+CD25+ cells in vivo augments the genera-

tion of tumor-specific T cells and promotes the rejection of

tumors derived from myeloma, sarcoma, and melanoma (Turk

et al., 2004; Onizuka et al., 1999). These data suggest that the

inhibition of Treg cell numbers and function could also provide

a potent antitumor therapy. Compounds inhibiting USP7 could

potentially be clinically relevant when used to treat diseases,

given that we have demonstrated that the inhibition of USP7

results in decreased Foxp3 protein expression, preventing

Treg-cell-mediated suppression.

We propose a molecular mechanism regulating the effi-

ciency of Treg-cell-mediated immune modulation. We demon-

strate that Foxp3 protein expression can be tightly regulated

by polyubiquitination-mediated proteosomal degradation. The
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modulation of USP7 activity may provide a novel molecular

therapy aimed to control (inappropriate) immune responses.

EXPERIMENTAL PROCEDURES

Antibodies, DNA Constructs, and Reagents

The following antibodies were used: mouse anti-Foxp3 clone PCH101 for fluo-

rescence-activated cell sorting analysis (eBioscience), mouse anti-FLAG M2

from Sigma-Aldrich, mouse anti-HA clone 12CA5 from Santa Cruz Biotech-

nology, and mouse anti-tubulin (Sigma-Aldrich), and anti-Myc monoclonal Ab

were made with a hybridoma cell line. Foxp3 was cloned from MIGR1-Foxp3

(which was kindly provided by S. Sakaguchi) (Hori et al., 2003) into pMT2 con-

taining a HA-tag-generating pMT2-HA-Foxp3. pMT2-FLAG-Foxp3, pMT2-

FLAG-Foxp3DE250, and pRSV-NFATC/A have been described previously

(van Loosdregt et al., 2013). HA-Ubi and HA-UbiK7xR were described previ-

ously (van der Horst et al., 2006). Foxp3 lysine mutants were obtained by

site-directed mutagenesis. Myc-USP7 has been described previously (Meul-

meester et al., 2005). pcDNA3, CHX, and MG132 were purchased from

Sigma-Aldrich. The HA-DUB probe and DUB inhibitor have been described

previously (Borodovsky et al., 2002; Colombo et al., 2010; Patent WO, 2007).

Luciferase Assays

Luciferase reporter assays were performed as previously described (van Loos-

dregt et al., 2011).

Confocal Imaging

Localization Studies

Localization experiments were performed as previously described (van Loos-

dregt et al., 2010).

Proximity Ligation Assay

PLA detection was performed with a Duolink II kit (Olink Bioscience) as previ-

ously described (van Loosdregt et al., 2011).

Pulse Chase Analysis

Transfected HEK 293T cells were washed and depleted from methionine and

cysteine for 30min in depletion medium (Dulbecco’s modified Eagle’s medium

[DMEM] without Met and Cys, Invitrogen), pulsed for 17 min with depletion

medium containing 35S Met + Cys (100 mCi/ml, PerkinElmer), washed, and

subsequently chased in chase medium (DMEM with Met and Cys + 100 ſM
methionine). Cells were washed in stop buffer (PBS + 100 mM N-ethylmalei-

mide) and lysed in lysis buffer (1% Triton, 1 mM EDTA, and Halt Protease

Inhibitor Cocktail [1:100] in PBS). Lysates were incubated with Anti-FLAG

M2 Affinity Gel-coupled beads (Sigma-Aldrich) for 2 hr at 4�C. Beads were

washed three times, boiled once in sample buffer, and subjected to gel

electrophoresis. Radioactive labeled FLAG-Foxp3 was analysed with phos-

phorscreen and a Storm 860 phosphorimager (GE Healthcare).

TUBEs Ubiquitination Assay

Ubiqutination of endogenously expressed protein was determined with

Agarose-TUBE 2 according to the manufacturer’s protocol (LifeSensors).

Isolation of Active DUBs with the HA-DUB Probe

HA immunoprecipitation of the HA-DUB probe was performed as described

previously (Borodovsky et al., 2002).

Immunoprecipitation

Immunoprecipitation experiments were performed as described previously

(van Loosdregt et al., 2010).

In Vitro Suppression Assay

Human CD4+CD25highCD127low Treg cells (top 2%) were sorted and cocul-

tured with CFSE-labeled PBMCs (1:5 ratio) in anti-CD3 (clone OKT3)-coated

96-well plates. Cells were cultured for 4 days in RPMI medium supplemented

with 10% fetal calf serum (FCS), 100 units/ml penicillin, 100 mg/ml strepto-

mycin, and 5 3 10–5 M 2-mercaptoethanol. Proliferation of CD4+ and CD8+

was determined by measuring CFSE dilution with a FACSCANTO flow cytom-

eter (BD Biosciences).
Generation of iTreg Cells

CD4+CD25� cells were isolated from cord blood by magnetic-activated cell

sorting and cultured in RPMI 1640 supplemented 10%FCS, 100 units/ml peni-

cillin, 100 mg/ml streptomycin, and 5 3 10–5 M 2-mercaptoethanol. Foxp3

expression was induced by culturing the cells for 5 days in combination with

anti-CD3 anti-CD28 Dynabeads, 300 IU IL-2, and 10 nM TGF-b.

Ubiquitin Pull-Down Assay

Cells transfected with both His-tagged ubiquitin and HA-tagged Foxp3 were

treated with 20 mM MG132 and 10 mM DUBi for 3 hr. Cells were lysed in a

pH 8 urea buffer (8 M urea, 100 mM Na2HPO4, 10 mM TRIS [pH 8.0], 0.2%

TX-100, 10 mM imidazole, and 1 mM N-ethylmaleimide) and tumbled with

Ni-NTA beads for 2 hr at room temperature. The beads were washed twice

in pH 8 urea buffer, twice in pH 6.3 urea buffer (8 M urea, 100 mM Na2HPO4,

10 mM TRIS [pH 6.3], 0.2% TX-100, and 10 mM imidazole), and once in a

wash buffer (20 mM TRIS [pH 8.0], 100 mM NaCl, 20% glycerol, 1 mM dithio-

threitol, and 10 mM imidazole). Beads were boiled in sample buffer for 5 min

and separated on SDS-PAGE, and Foxp3-specific polyubiquitination was

determined by western blot analysis with anti-HA.

T Cell Differentiation

We cultured 100,000 sorted CD4+CD27+CD45RO� naı̈ve T cells derived from

human PBMCs in 96-well plates coated with 0.3 mg/ml anti-CD3 and 2 mg/ml

soluble anti-CD28 for 4 days. For skewing towards different T cells subsets,

the cultures were supplemented with the following cytokines and antibodies:

Th1, IL-12 (200 U/ml) + anti-iL-4 (10 mg/ml); Th2, IL-4 (1000 U/ml) + anti-

iFNg (5 mg/ml); Th17, TGFb (10 ng/ml) + IL-6 (20 ng/ml) + IL1b (10 ng/ml) +

IL-23 (100 ng/ml); Treg, IL-2 (300 U/ml) + TGFb (10 ng/ml).

Induced Colitis Mouse Model for DUBi-Treated Treg Cells

Rag1�/� mice were kept in the animal facility of the Utrecht University under

specific pathogen-free conditions. The experiments were approved by the

Animal Experiment Committee of the Faculty of Veterinary Medicine (Utrecht

University). Immunodeficient Rag1�/� mice were injected with 4 3 105

CD4+CD45RBhigh cells in order to induce colitis. After 21 days, 2 3 105 Treg

cells isolated from Foxp3-GFP mice were pretreated with 10 mM DUBi for

1 hr, washed, and intravenously injected. The mice were sacrificed 3 weeks

later, and tissue slides of the colon were prepared. Scoring was performed

as described previously (Zaiss et al., 2013).

Induced Colitis Mouse Model for USP7 KD Treg Cells

Naı̈ve CD4+CD25�CD62Lhigh T cells were isolated from BALB/c and intrave-

nously injected into BALB/c Rag2�/� immunodeficient recipients (1 3 106

per mouse). CD4+CD25+ Treg cells or siRL- or siUSP7-transduced Treg cells

(2 3 105) isolated from Thy1.1 BALB/c were intravenously coinjected where

indicated. After 8 weeks, mice were sacrificed, and tissue slides of the colon

were prepared and scored as described.

Statistical Analysis

Statistical analysis was performed with the Mann-Whitney test (GraphPad

Prism). p < 0.05 was considered statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information contains six figures and can be found with this

article online at http://dx.doi.org/10.1016/j.immuni.2013.05.018.
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