Regulation of oligodendrocyte differentiation by SOX4

E12 EDIT.jpg

SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. SOX4 levels decreased during oligodendrocyte differentiation in vitro while SOX4 knockdown induces increased oligodendrocyte differentiation. Conversely, conditional SOX4 overexpression decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression. This work was performed by Luca Braccioli as part of his thesis project in the Coffer Lab and has been published in Stem Cell Reports.